This article was downloaded by: On: *19 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



### International Journal of Polymeric Materials

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713647664

### Effect of Electronic Charge on Oxygen Atom of Oxygen-Containing Oxidizers on Characteristics of Reactive Rocket Fuels

V. A. Babkin<sup>a</sup>; K. S. Minsker<sup>a</sup>; S. V. Petrukhijn<sup>a</sup>; O. V. Babkina<sup>a</sup>; A. S. Belorusov<sup>a</sup>; D. Yu. Prochukhan<sup>a</sup>; D. G. Pimenov<sup>a</sup>; I. V. Scherbakov<sup>a</sup>; A. V. Bikadorov<sup>a</sup>; O. A. Ponomarev<sup>a</sup>; Yu. A. Sangalov<sup>a</sup>; I. V. Scherbakov<sup>a</sup>; G. E. Zaikov<sup>a</sup>

<sup>a</sup> Institute of Biochemical Physics, the Russian Academy of Sciences, Moscow, Russia

**To cite this Article** Babkin, V. A., Minsker, K. S., Petrukhijn, S. V., Babkina, O. V., Belorusov, A. S., Prochukhan, D. Yu., Pimenov, D. G., Scherbakov, I. V., Bikadorov, A. V., Ponomarev, O. A., Sangalov, Yu. A., Scherbakov, I. V. and Zaikov, G. E.(2000) 'Effect of Electronic Charge on Oxygen Atom of Oxygen-Containing Oxidizers on Characteristics of Reactive Rocket Fuels', International Journal of Polymeric Materials, 47: 2, 329 – 342

To link to this Article: DOI: 10.1080/00914030008035068

URL: http://dx.doi.org/10.1080/00914030008035068

### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Intern. J. Polymeric Mater., 2000, Vol. 47, pp. 329-342 Reprints available directly from the publisher Photocopying permitted by license only

### Effect of Electronic Charge on Oxygen Atom of Oxygen-Containing Oxidizers on Characteristics of Reactive Rocket Fuels

V. A. BABKIN, K. S. MINSKER, S. V. PETRUKHIJN, O. V. BABKINA, A. S. BELORUSOV, D. YU. PROCHUKHAN, D. G. PIMENOV, I. V. SCHERBAKOV, A. V. BIKADOROV, O. A. PONOMAREV, YU. A. SANGALOV, I. V. SCHERBAKOV and G. E. ZAIKOV\*

Institute of Biochemical Physics, the Russian Academy of Sciences, 4 Kosygin Str., Moscow 117334, Russia

(Received 8 December 1998)

The calculations of typical oxygen-containing oxidizers of rocket fuels  $OF_2$ ,  $O_2$ ,  $ClO_3F$ ,  $H_2O_2$ ,  $N_2O_4$ ,  $HNO_3$ , were carried out by quantum chemical semi-empirical MNDO method in Dewar and Teel parameterization with minimization of total energy of molecular system by Davidon-Fletcher-Powell method. The optimized electronic and geometric structure of these oxidizers was obtained. We established correlative dependencies between some parameters of the following reactive fuels  $(H_2, N_2H_4, N_2 H_2(CH_3)_2 \sim CH_2 \sim$ , Al H<sub>3</sub>, B<sub>5</sub>H<sub>9</sub>, Be H<sub>2</sub>): and minimum electronic charge on oxygen atom  $q_0^{min}$  of oxygen-containing oxidizers. The latter being calculated by the MNDO method.

*Keywords:* Reactive fuels; rockets; oxidizers; electronic charge; quantum chemical calculations; MNDO method

#### 1. BACKGROUND

Typical Oxygen-containing oxidizers of reactive fuels are combinations of the type:  $OF_2$ ,  $O_2$ ,  $H_2O$ ,  $ClO_3F$ ,  $N_2O_4$ ,  $HNO_3$  [1]. Despite the existing quantum-chemical calculations of some oxidizers, in

<sup>\*</sup>Corresponding author.

particular by CNDO/2 method [1, 2], there is not systematic research in this field.

Quantum chemical calculation of oxygen-containing rocket fuels were carried out by classical semi-empiric MNDO method, to determine their optimized electronic and geometrical structure and compare the quantum-chemical parameters, for example; the electronic charge on oxygen atom  $q_0^{\min}$  (Tab. I) with parameters of combustion of rocket fuels. These combustion parameters include; specific traction in atmosphere  $P_1$ , specific traction in vacuum  $P_i^{\infty}$ , specific impulse of pressure  $I_p$ , combuster temperature  $T_c$ , etc. (Tabs. II – VII). We expected that

| N | Oxidizers                     | $E_0, kJ/mole$ | 90 <sup>min</sup> |
|---|-------------------------------|----------------|-------------------|
| 1 | OF <sub>2</sub>               | - 123004       | 0.146             |
| 2 | O <sub>2</sub> -              | - 61795        | 0.0               |
| 3 | $\tilde{H_{2}O_{2}}$          | - 64740        | - 0.194           |
| 4 | N <sub>2</sub> O <sub>4</sub> | - 163601       | -0.215            |
| 5 | HNO <sub>3</sub>              | 114232         | -0.348            |

TABLE I The some quantum-chemical parameters of oxygen-containing oxidizers

 $E_0$  – the total energy of system.

 $q_{\rm O}^{\rm min}$  - the minimum electronic charge on oxygen atom.

TABLE II The specific traction in atmosphere  $-P_1$  of some reactive fuels in various oxidizers [5]

| Fuels                         | $Oxidizers, P_1s$  |        |                       |          |          |                  |  |
|-------------------------------|--------------------|--------|-----------------------|----------|----------|------------------|--|
|                               | ClO <sub>3</sub> F | $OF_2$ | <i>O</i> <sub>2</sub> | $H_2O_2$ | $N_2O_4$ | HNO <sub>3</sub> |  |
| H <sub>2</sub>                | 344.0              | 412.2  | 391.1                 | 322.4    | 340.7    | 319.7            |  |
| $N_2H_4$                      | 295.3              | 345.9  | 312.9                 | 286.9    | 291.1    | 279.1            |  |
| $H_2N_2(CH_3)_2$              | 289.6              | 352.2  | 309.7                 | 283.7    | 285.2    | 272.4            |  |
| — CH <sub>2</sub> —           | 280.6              | 351.9  | 300.1                 | 278.2    | 275.7    | 263.4            |  |
| AlH <sub>3</sub>              | 293.7              | 326.5  | 310.8                 | 318.4    | 300.5    | 301.3            |  |
| B <sub>5</sub> H <sub>9</sub> | 299.3              | 361.6  | 319.7                 | 309.1    | 299.3    | 293.7            |  |
| BeH <sub>2</sub>              | 309.5              | 342.9  | 331.4                 | 353.1    | 316.1    | 322.1            |  |

TABLE III The specific traction in vacuum –  $P_i^{\infty}$  of some reactive fuels in various oxidizers [5]

| Fuels            | Oxidizers, $P_i^{\infty}s$ |                 |                       |                |          |         |  |
|------------------|----------------------------|-----------------|-----------------------|----------------|----------|---------|--|
|                  | ClO <sub>3</sub> F         | OF <sub>2</sub> | <i>O</i> <sub>2</sub> | $\dot{H}_2O_2$ | $N_2O_4$ | $HNO_3$ |  |
| H <sub>2</sub>   | 398.7                      | 478.3           | 456.0                 | 374.8          | 494.9    | 370.8   |  |
| $N_2H_4$         | 347.4                      | 408.4           | 369.7                 | 337.6          | 342.0    | 327.4   |  |
| $H_2N_2(CH_3)_2$ | 341.8                      | 416.6           | 368.2                 | 335.9          | 337.0    | 321.6   |  |
| $-CH_2-$         | 331.9                      | 413.4           | 358.5                 | 329.8          | 326.2    | 312.0   |  |
| AlH <sub>3</sub> | 353.6                      | 393.4           | 375.7                 | 383.1          | 362.8    | 363.6   |  |
| $B_5H_9$         | 395.5                      | 433.2           | 385.2                 | 373.2          | 359.6    | 352.3   |  |
| BeH <sub>2</sub> | 377.5                      | 417.1           | 406.5                 | 430.0          | 384.9    | 394.8   |  |

| Fuels            | $Oxidizers, I_ps$ |        |                       |          |          |                  |  |
|------------------|-------------------|--------|-----------------------|----------|----------|------------------|--|
|                  | $ClO_3F$          | $OF_2$ | <i>O</i> <sub>2</sub> | $H_2O_2$ | $N_2O_4$ | HNO <sub>3</sub> |  |
| H <sub>2</sub>   | 219.6             | 261.3  | 247.9                 | 205.1    | 217.7    | 204.1            |  |
| $N_2H_4$         | 183.0             | 213.3  | 192.8                 | 178.8    | 181.5    | 174.8            |  |
| $H_2N_2(CH_3)_2$ | 178.9             | 217.8  | 189.3                 | 174.8    | 175.9    | 168.7            |  |
| $-CH_{2}$        | 173.0             | 218.5  | 182.7                 | 171.2    | 169.7    | 162.0            |  |
|                  | 177.6             | 197.4  | 186.4                 | 192.2    | 180.7    | 181.3            |  |
| B₅H₀             | 182.0             | 220.8  | 193.2                 | 186.9    | 181.7    | 178.8            |  |
| BeH <sub>2</sub> | 181.5             | 202.5  | 195.6                 | 206.9    | 188.9    | 190.0            |  |

TABLE IV The specific impulse of pressure  $-I_p$  of some reactive fuels in various oxidizers [5]

TABLE V The combustor temperature  $-T_c$  of some reactive fuels in various oxidizers [5]

| Fuels            | Oxidizers, $T_{c}^{\circ} K$ |        |                       |          |          |                  |  |
|------------------|------------------------------|--------|-----------------------|----------|----------|------------------|--|
|                  | $ClO_3F$                     | $OF_2$ | <i>O</i> <sub>2</sub> | $H_2O_2$ | $N_2O_4$ | HNO <sub>3</sub> |  |
| H <sub>2</sub>   | 3003                         | 3547   | 2977                  | 2419     | 2640     | 2474             |  |
| $N_2H_4$         | 3467                         | 4047   | 3406                  | 2927     | 3247     | 3021             |  |
| $H_2N_2(CH_3)_2$ | 3657                         | 4493   | 3608                  | 3008     | 3415     | 3147             |  |
| $-CH_2-$         | 3720                         | 4716   | 3686                  | 3006     | 3438     | 3147             |  |
| AlH <sub>3</sub> | 4061                         | 4340   | 4301                  | 3834     | 4179     | 3993             |  |
| $B_5H_9$         | <b>424</b> 2                 | 5009   | 4160                  | 2969     | 3913     | 3588             |  |
| BeH <sub>2</sub> | 3205                         | 3300   | 3352                  | 3205     | 2831     | 3358             |  |

TABLE VI The combustor-exit temperature –  $T_e$  of some reactive fuels in various oxidizers [5]

| Fuels                         | $Oxidizers, T^{\circ}_{e} K$ |        |                       |                |          |         |  |  |
|-------------------------------|------------------------------|--------|-----------------------|----------------|----------|---------|--|--|
|                               | $ClO_3F$                     | $OF_2$ | <i>O</i> <sub>2</sub> | $\dot{H}_2O_2$ | $N_2O_4$ | $HNO_3$ |  |  |
| H <sub>2</sub>                | 1288                         | 1622   | 1355                  | 1050           | 1106     | 1043    |  |  |
| $N_2H_4$                      | <b>19</b> 21                 | 2435   | 1974                  | 1533           | 1703     | 1530    |  |  |
| $H_2N_2(CH_3)_2$              | 2114                         | 2705   | 2280                  | 1731           | 1966     | 1746    |  |  |
| $-CH_2-$                      | 2221                         | 2670   | 2457                  | 1745           | 2016     | 1838    |  |  |
| AlH <sub>3</sub>              | 2904                         | 3200   | 3232                  | 2707           | 3090     | 2914    |  |  |
| B <sub>5</sub> H <sub>9</sub> | 2930                         | 3408   | 2969                  | 2094           | 2653     | 2311    |  |  |
| BeH <sub>2</sub>              | 2669                         | 2682   | 2857                  | 2656           | 2402     | 2816    |  |  |

TABLE VII The increment of ideal velocity of rocket flight –  $\Delta V$  of some reactive fuels in various oxidizers [5]

| Fuels                         | $Oxidizers, \Delta Vm/s$ |        |                       |          |          |         |  |
|-------------------------------|--------------------------|--------|-----------------------|----------|----------|---------|--|
|                               | $ClO_3F$                 | $OF_2$ | <i>O</i> <sub>2</sub> | $H_2O_2$ | $N_2O_4$ | $HNO_3$ |  |
| H <sub>2</sub>                | 2350                     | 2669   | 2057                  | 2324     | 2111     | 2144    |  |
| $N_2H_4$                      | 4233                     | 4830   | 3980                  | 4003     | 3985     | 3883    |  |
| $H_2N_2(CH_3)_2$              | 4087                     | 4816   | 3749                  | 3930     | 3823     | 3739    |  |
| $-CH_2-$                      | 4217                     | 5067   | 3823                  | 4010     | 3901     | 3815    |  |
| AlH <sub>3</sub>              | 4617                     | 5004   | 4428                  | 4806     | 4537     | 4595    |  |
| B <sub>5</sub> H <sub>9</sub> | 4136                     | 4866   | 3686                  | 3839     | 3846     | 3820    |  |
| BeH <sub>2</sub>              | 4037                     | 4338   | 3744                  | 4285     | 3721     | 4060    |  |

these correlations there parameters will provide guidelines for development of new more efficient fuels, oxidizers for rocket fuels.

#### 2. METHODOLOGY

To calculate the mentioned oxidizers we used MNDO method in Dewar and Teel parameterization [3]. This method gives quite precise values of valent angles and realistic sequence of levels of molecular orbitals. The MNDO calculation also gives adequate results for hydrazine type molecules combinations of fluorine, especially those containing F-O and F-N bonds. The minimization of the total energy of molecular system has been performed by Davidon-Fletcher-Powell method with optimization at all geometric parameters.

The calculations were performed in classical approximation of isolated molecule in a gas phase.

#### 3. RESULTS AND DISCUSSION

The calculated quantum-chemical parameters of oxygen-containing oxidizers (Tab. I) and the electronic charge on oxygen atom, in particular, were compared with the published parameters of burning of reactive fuels (Tabs. II-VI) and correlative dependences between them were established.

Quantum-chemical characteristics of models of oxygen-containing oxidizers of rocket fuels are represented in Table I, and optimal electronic and geometric structure is shown in Figure 1.

The Table I shows that the lowest negative charge on oxygen atom of all investigated models of oxygen-containing oxidizers of reactive fuels is with the nitric acid  $q_0^{\min} = -0.348$ . The highest (and even a positive) charge on oxygen atom is found with oxygen diffuorid  $q_0^{\min} =$ +0.146. For O<sub>2</sub> oxidizer, the  $q_0^{\min} = 0$ .

### 3.1. Specific Traction in Atmosphere ( $P_1$ ) and in Vacuum ( $P_i^{\infty}$ )

With all considered fuels:  $H_2$ ,  $N_2H_4$ ,  $H_2N_2(CH_3)_2$ ,  $--CH_2$ ,  $AlH_3$ ,  $B_5H_9$  the OF<sub>2</sub> and O<sub>2</sub> oxidizers are exhibit highest values of specific



FIGURE 1 The optimal electronic and geometric structure of molecules of oxygencontaining oxidizers of reactive fuels.

traction in atmosphere –  $P_1$  and specific traction in vacuum –  $P_i^{\infty}$  (Tabs. II, III). The lowest values of  $P_1$  and  $P_i^{\infty}$  are characteristic for the nitric acid. In addition, the increases of negative charge on oxygen atom  $q_0^{\min}$  of oxygen-containing oxidizers leads to decreases of the values  $P_1$  and  $P_i^{\infty}$ . These findings confirm the merits of correlative relations between parameters of combustion of rocket fuels (Tabs. II, III) and electronic charge  $q_0^{\min}$  on oxygen atom calculated by MNDO method (Tab. I).

The analysis of quantum-chemical parameters of oxidizers allowed us to establish that  $O_2$  and  $OF_2$  have the minimum electronic charge on oxygen atom, and moreover for OF<sub>2</sub>  $q_{\rm O}^{\rm min} > 0$ . These oxidizers are characterized by the maximum values of specific traction in atmosphere  $-P_1$  and specific traction in vacuum  $-P_i^{\infty}$ .

The comparison of calculated data of oxygen-containing oxidizers (Tab. I) and literature data of parameters of combustion of rocket fuels (Tabs. II, III) showed that there is complex relationship between these parameters and  $q_{\rm O}^{\rm min}$ .

For specific traction in atmosphere –  $P_1$  and specific traction in vacuum –  $P_i^{\infty}$  we obtained the following correlative dependences on  $q_{\rm O}^{\rm min}$  for H<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>N<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, — CH<sub>2</sub> — and B<sub>5</sub>H<sub>9</sub>:

$$H_{2} \begin{vmatrix} P_{1} = P_{1}^{\max}[0.919 + 0.575(q_{O}^{\min}) + 0.383(q_{O}^{\min})^{2}], \\ P_{1}^{\max}(OF_{2}) = 412.2 \text{ s.}, R = 0.964 \\ P_{i}^{\infty} = P_{i}^{\infty} \max[0.922 + 0.571(q_{O}^{\min}) + 0.341(q_{O}^{\min})^{2}], \\ P_{i}^{\infty} \max(OF_{2}) = 478.3 \text{ s.}, R = 0.963 \end{vmatrix}$$

$$N_{2}H_{4} \begin{vmatrix} P_{1} = P_{1}^{\max}[0.922 + 0.387(q_{0}^{\min})], \\ P_{1}^{\max}(OF_{2}) = 345.3 \text{ s.}, R = 0.965 \\ P_{i}^{\infty} = P_{i}^{\infty} \max[0.923 + 0.341(q_{0}^{\min})], \\ P_{i}^{\infty} \max(OF_{2}) = 408.4 \text{ s.}, R = 0.973 \end{vmatrix}$$

$$\begin{array}{c|c} & P_1 = P_1^{\max}[0.872 + 0.449(q_0^{\min})], \\ P_1^{\max}(\mathrm{OF}_2) = 352.2 \,\mathrm{s.}, R = 0.965 \\ H_2 N_2 & P_i^{\infty} = P_i^{\infty} \max[0.909 + 0.454(q_0^{\min})], \\ (\mathrm{CH}_3)_2 & P_i^{\infty} \max(\mathrm{OF}_2) = 416.6 \,\mathrm{s.}, R = 0.971 \end{array}$$

$$-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}$$

$$B_{5}H_{9} \begin{vmatrix} P_{1} = P_{1}^{\max}[0.902 + 0.501(q_{0}^{\min}) + 0.744(q_{0}^{\min})^{2}], \\ P_{1}^{\max}(OF_{2}) = 361.6 \text{ s.}, R = 0.970 \\ P_{i}^{\infty} = P_{i}^{\infty} \max[0.907 + 0.482(q_{0}^{\min}) + 0.658(q_{0}^{\min})^{2}], \\ P_{i}^{\infty} \max(OF_{2}) = 433.2 \text{ s.}, R = 0.977 \end{vmatrix}$$

### 3.2. Specific Impulse of Pressure $(I_p)$ and Combustor Temperature $(T_c)$

With all considered fuels:  $H_2$ ,  $N_2H_4$ ,  $H_2N_2(CH_3)_2$ ,  $--CH_2$ ,  $AlH_3$ ,  $B_5H_9$  the oxidizers  $OF_2$  and  $O_2$  exhibit the highest values of specific impulse of pressure –  $I_p$  and combustor temperature –  $T_c$  (Tabs. IV, V). The minimum values of  $I_p$  and  $T_c$  are found with the nitric acid. Note also that the increase of negative charge on oxygen atom  $q_0^{min}$  of oxygen-containing oxidizers leads to a decrease of the values  $I_p$  and  $T_c$ .

The analysis of quantum-chemical parameters of oxidizers allowed us to establish that O<sub>2</sub> and OF<sub>2</sub> have the minimum electronic charge on oxygen atom, and moreover for OF<sub>2</sub>  $q_{\rm O}^{\rm min} > 0$ . These oxidizers are characterized by the maximum values of specific impulse of pressure –  $I_p$  and combustor temperature –  $T_c$ .

The comparison of calculated data of oxygen-containing oxidizers (Tab. I) and literature data of parameters of combustion of rocket fuels (Tabs. IV, V) showed that there is complex relationship between these parameters and  $q_{\rm O}^{\rm min}$ .

For specific impulse of pressure  $-I_p$  and combustor temperature  $-T_c$  we obtained the following correlative dependences on  $q_{\rm O}^{\rm min}$  for H<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>N<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, - CH<sub>2</sub> -- and B<sub>5</sub>H<sub>9</sub>:

$$H_{2} \begin{cases} I_{p} = I_{p}^{\max}[0.919 + 0.559(q_{O}^{\min}) + 0.390(q_{O}^{\min})^{2}], \\ I_{p}^{\max}(OF_{2}) = 261.3 \text{ s.}, R = 0.962 \\ T_{c} = T_{c}^{\max}[0.837 + 0.907(q_{O}^{\min}) + 1.478(q_{O}^{\min})^{2}], \\ T_{c}^{\max}(OF_{2}) = 3547^{\circ}\text{K}, R = 0.982 \end{cases}$$

$$\mathbf{N}_{2}\mathbf{H}_{4} \begin{vmatrix} I_{p} = I_{p}^{\max}[0.924 + 0.356(q_{O}^{\min})], \\ I_{p}^{\max}(OF_{2}) = 213.3 \text{ s.}, R = 0.961 \\ T_{c} = T_{c}^{\max}[0.853 + 0.765(q_{O}^{\min}) + 1.393(q_{O}^{\min})^{2}], \\ T_{c}^{\max}(OF_{2}) = 4047^{\circ}\text{K}, R = 0.959 \end{vmatrix}$$

$$\begin{array}{c} I_{p} = I_{p}^{\max}[0.882 + 0.615(q_{O}^{\min}) + 0.914(q_{O}^{\min})^{2}], \\ I_{p}^{\max}(OF_{2}) = 217.8 \text{ s.}, R = 0.992 \\ T_{c} = T_{c}^{\max}[0.819 + 0.926(q_{O}^{\min}) + 1.777(q_{O}^{\min})^{2}], \\ (CH_{3})_{2} \mid T_{c}^{\max}(OF_{2}) = 4493^{\circ}\text{K}, R = 0.961 \end{array}$$

$$-CH_{2}--\begin{bmatrix}I_{p} = I_{p}^{\max}[0.856 + 0.737(q_{O}^{\min}) + 1.222(q_{O}^{\min})^{2}],\\I_{p}^{\max}(OF_{2}) = 218.5 \text{ s.}, R = 0.987\\T_{c} = T_{c}^{\max}[0.799 + 1.028(q_{O}^{\min}) + 1.965(q_{O}^{\min})^{2} + 13.924(q_{O}^{\min})^{3}],\\T_{c}^{\max}(OF_{2}) = 4716^{\circ}\text{K}, R = 0.966\end{bmatrix}$$

$$B_{5}H_{9} \begin{bmatrix} I_{p} = I_{p}^{\max}[0.897 + 0.525(q_{O}^{\min}) + 0.870(q_{O}^{\min})^{2}], \\ I_{p}^{\max}(OF_{2}) = 220.8 \text{ s.}, R = 0.978 \end{bmatrix}$$

## 3.3. Specific Traction in Atmosphere ( $P_1$ ) and Combustor Temperature ( $T_c$ )

With all considered fuels:  $H_2$ ,  $N_2H_4$ ,  $H_2N_2(CH_3)_2$ , — $CH_2$  —,  $AlH_3$ ,  $B_5H_9$  the oxidizers  $OF_2$  and  $O_2$  exhibit characterized highest values of specific traction in atmosphere –  $P_1$  and combustor temperature –  $T_c$  (Tabs. II–VI). The lowest values of  $P_1$  and  $T_c$  are found with nitric acid. In addition, the increases of negative charge on oxygen atom  $q_0^{\min}$  of oxygen-containing oxidizers leads to decreases of the values  $P_1$  and  $T_c$ . The oxidizers  $O_2$  and  $OF_2$  are characterized by the maximum values of specific traction in atmosphere –  $P_1$  and combustor temperature –  $T_c$ .

The comparison of calculated data of oxygen-containing oxidizers (Tab. I) and literature data of parameters of combustion of rocket fuels (Tabs. II, VI) showed that there is complex relationship between these two parameters and  $q_{\Omega}^{\min}$ .

For specific traction in atmosphere –  $P_1$  and combustor temperature –  $T_c$ , we obtained the following correlative dependences on  $q_0^{\min}$  for investigated fuels.

$$H_{2} \begin{cases} P_{1} = P_{1}^{\max}[0.919 + 0.575(q_{O}^{\min}) + 0.383(q_{O}^{\min})^{2}], \\ P_{1}^{\max}(OF_{2}) = 412.2 \text{ s.}, R = 0.964 \\ T_{c} = T_{c}^{\max}[0.837 + 0.907(q_{O}^{\min}) + 1.478(q_{O}^{\min})^{2}], \\ T_{c}^{\max}(OF_{2}) = 3547^{\circ}\text{K}, R = 0.982 \\ \end{cases}$$
$$\begin{cases} P_{1} = P_{1}^{\max}[0.922 + 0.387(q_{O}^{\min})], \\ P_{1}^{\max}(OF_{2}) = 345.3 \text{ s.}, R = 0.965 \end{cases}$$

$$N_{2}H_{4} \left| \begin{array}{c} T_{c} = T_{c}^{\max}[0.853 + 0.765(q_{O}^{\min}) + 1.393(q_{O}^{\min})^{2}], \\ T_{c}^{\max}(OF_{2}) = 4047^{\circ}K, R = 0.959 \end{array} \right|$$

$$\begin{array}{c} P_1 = P_1^{\max}[0.872 + 0.449(q_0^{\min})], \\ P_1^{\max}(OF_2) = 352.2 \text{ s.}, R = 0.965 \\ H_2N_2 \\ (CH_3)_2 \\ T_c^{\max}= T_c^{\max}[0.819 + 0.926(q_0^{\min}) + 1.777(q_0^{\min})^2], \\ T_c^{\max}(OF_2) = 4493^{\circ}\text{K}, R = 0.961 \end{array}$$

$$- \text{CH}_{2} - \text{CH}_{2} - \frac{P_{1} = P_{1}^{\max}[0.872 + 0.671(q_{O}^{\min}) + 0.966(q_{O}^{\min})^{2}]}{P_{1}^{\max}(\text{OF}_{2}) = 351.9 \text{ s.}, R = 0.990}{T_{c} = T_{c}^{\max}[0.799 + 1.028(q_{O}^{\min}) + 1.965(q_{O}^{\min})^{2} + 13.924(q_{O}^{\min})^{3}],}{T_{c}^{\max}(\text{OF}_{2}) = 4716^{\circ}\text{K}, R = 0.966}$$

$$\mathbf{B}_{5}\mathbf{H}_{9} \begin{vmatrix} P_{1} = P_{1}^{\max}[0.902 + 0.501(q_{0}^{\min}) + 0.744(q_{0}^{\min})^{2}], \\ P_{1}^{\max}(\mathbf{OF}_{2}) = 361.6 \text{ s.}, R = 0.970 \end{vmatrix}$$

### 3.4. Specific Impulse Pressure $(I_p)$ and Specific Traction in Vacuum $(P_i^{\infty})$

With all considered fuels the oxidizers  $OF_2$  and  $O_2$  exhibit highest values of specific impulse of pressure  $-I_p$  and specific traction in vacuum  $-P_i^{\infty}$  (Tabs. III, IV). The lowest values of  $I_p$  and  $P_i^{\infty}$  are found with nitric acid. It should be noted that increases of negative charge on oxygen atom  $q_0^{\min}$  of oxygen-containing oxidizers lead to decreases of the values  $I_p$  and  $P_i^{\infty}$ . These  $O_2$  and  $OF_2$  oxidizers are characterized by the maximum values of specific impulse of pressure  $-I_p$ and specific traction in vacuum  $-P_i^{\infty}$ .

The comparison of calculated data of oxygen-containing oxidizers (Tab. I) and literature data of parameters of combustion of rocket fuels (Tabs. III, IV) indicates a complex dependence between these parameters and  $q_{\rm O}^{\rm min}$ .

For specific impulse of pressure  $-I_p$  and specific traction in vacuum  $-P_i^{\infty}$  we obtained the following correlative dependences on  $q_0^{\min}$  for H<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>N<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, --CH<sub>2</sub>--, and B<sub>5</sub>H<sub>9</sub>.

$$H_2 \begin{cases} I_p = I_p^{\max}[0.919 + 0.559(q_{\rm O}^{\min}) + 0.390(q_{\rm O}^{\min})^2], \\ I_p^{\max}({\rm OF}_2) = 261.3 \text{ s.}, R = 0.962 \\ P_i^{\infty} = P_i^{\infty \max}[0.922 + 0.571(q_{\rm O}^{\min}) + 0.341(q_{\rm O}^{\min})^2], \\ P_i^{\infty \max}({\rm OF}_2) = 478.3 \text{ s.}, R = 0.963 \end{cases}$$

$$\begin{split} \mathbf{N}_{2}\mathbf{H}_{4} & \begin{bmatrix} I_{p} = I_{p}^{\max}[0.924 + 0.356(q_{O}^{\min})], \\ I_{p}^{\max}(OF_{2}) = 213.3 \text{ s.}, R = 0.961 \\ P_{i}^{\infty} = P_{i}^{\infty}\max[0.923 + 0.341(q_{O}^{\min})], \\ P_{i}^{\infty}\max(OF_{2}) = 408.4 \text{ s.}, R = 0.973 \\ \end{bmatrix} \\ \begin{bmatrix} I_{p} = I_{p}^{\max}[0.882 + 0.615(q_{O}^{\min}) + 0.914(q_{O}^{\min})^{2}], \\ I_{p}^{\max}(OF_{2}) = 217.8 \text{ s.}, R = 0.992 \\ P_{i}^{\infty} = P_{i}^{\infty}\max[0.909 + 0.454(q_{O}^{\min})], \\ (CH_{3})_{2} \end{bmatrix} \\ \begin{bmatrix} I_{p} = I_{p}^{\max}[0.856 + 0.737(q_{O}^{\min}) + 1.222(q_{O}^{\min})^{2}], \\ I_{p}^{\max}(OF_{2}) = 218.5 \text{ s.}, R = 0.987 \\ P_{i}^{\infty} = P_{i}^{\infty}\max[0.900 + 0.484(q_{O}^{\min})], \\ P_{i}^{\infty} = P_{i}^{\infty}\max[0.900 + 0.484(q_{O}^{\min})], \\ P_{i}^{\infty} \max(OF_{2}) = 413.4 \text{ s.}, R = 0.965 \\ \end{bmatrix} \\ \begin{bmatrix} I_{p} = I_{p}^{\max}[0.897 + 0.525(q_{O}^{\min}) + 0.870(q_{O}^{\min})^{2}], \\ I_{p}^{\max}(OF_{2}) = 220.8 \text{ s.}, R = 0.978 \\ \end{bmatrix}$$

$$B_{5}H_{9} \begin{cases} P_{i}^{\infty} = P_{i}^{\infty \max}[0.907 + 0.482(q_{O}^{\min}) + 0.658(q_{O}^{\min})^{2}], \\ P_{i}^{\infty \max}(OF_{2}) = 433.2 \text{ s.}, R = 0.977 \end{cases}$$

# 3.5. Specific Traction in Vacuum $(P_i^{\infty})$ and Combustor Exit Temperature $(T_{\theta})$

With all considered fuels: the oxidizers  $OF_2$  and  $O_2$  exhibit the highest values of specific traction in vacuum  $-P_i^{\infty}$  and combustor-exit temperature  $-T_e$  (Tabs. III, VI). The minimum values of  $P_i^{\infty}$  and  $T_e$  are noted with nitric acid. Moreover, the increases of negative charge on oxygen atom  $q_0^{\min}$  of oxygen-containing oxidizers lead to decreases of the values  $P_i^{\infty}$  and  $T_e$ . The  $O_2$  and  $OF_2$  oxidizers are characterized by the maximum values of specific traction in vacuum  $-P_i^{\infty}$  and combustor-exit temperature  $-T_e$ .

The comparison of calculated data of oxygen-containing oxidizers (Tab. I) and literature data of parameters of combustion of rocket fuels (Tabs. III, VI) showed that there is complex dependence between these parameters and  $q_{\Omega}^{\min}$ .

For specific traction in vacuum  $-P_i^{\infty}$  and combustor-exit temperature  $-T_e$  we obtained the following correlative dependences on  $q_0^{\min}$  for investigated fuels.

$$H_2 \begin{cases} P_i^{\infty} = P_i^{\infty \max}[0.922 + 0.571(q_{\rm O}^{\min}) + 0.341(q_{\rm O}^{\min})^2], \\ P_i^{\infty \max}({\rm OF}_2) = 478.3 \, {\rm s.}, R = 0.963 \\ T_e = T_e^{\max}[0.821 + 1.043(q_{\rm O}^{\min}) + 1.493(q_{\rm O}^{\min})^2], \\ T_e^{\max}({\rm OF}_2) = 1622^{\circ}{\rm K}, R = 0.993 \end{cases}$$

$$N_{2}H_{4} \begin{vmatrix} P_{i}^{\infty} = P_{i}^{\infty} \max[0.923 + 0.341(q_{O}^{\min})], \\ P_{i}^{\infty} \max(OF_{2}) = 408.4 \text{ s.}, R = 0.973 \\ T_{e} = T_{e}^{\max}[0.819 + 1.011(q_{O}^{\min}) + 1.407(q_{O}^{\min})^{2}], \\ T_{e}^{\max}(OF_{2}) = 2435^{\circ}\text{K}, R = 0.97 \end{vmatrix}$$

$$\begin{array}{l} {\rm H_2N_2} \\ {\rm (CH_3)_2} \end{array} \left| \begin{array}{l} P_i^\infty = P_i^\infty \max [0.909 + 0.454(q_{\rm O}^{\rm min})], \\ P_i^\infty \max ({\rm OF_2}) = 416.6 \, {\rm s.}, R = 0.971 \\ T_e = T_e^{\rm max} [0.833 + 0.979(q_{\rm O}^{\rm min}) + 1.271(q_{\rm O}^{\rm min})^2], \\ T_e^{\rm max} ({\rm OF_2}) = 2705^\circ {\rm K}, R = 0.973 \end{array} \right.$$

$$\mathbf{B}_{5}\mathbf{H}_{9} \begin{bmatrix} P_{i}^{\infty} = P_{i}^{\infty}\max[0.907 + 0.482(q_{O}^{\min}) + 0.658(q_{O}^{\min})^{2}], \\ P_{i}^{\infty}\max(OF_{2}) = 433.2 \,\mathrm{s.}, R = 0.977 \end{bmatrix}$$

# 3.6. Combustor $(T_{e})$ and Combustor Exit Temperature $(T_{e})$

With all considered fuels: H<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>N<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, —CH<sub>2</sub>—, AlH<sub>3</sub>, B<sub>5</sub>H<sub>9</sub> the oxidizers OF<sub>2</sub> and O<sub>2</sub> exhibit the highest values of combustor and combustor-exit temperature –  $T_c$ ,  $T_e$  (Tabs. II, III). The lowest values of  $T_c$  and  $T_e$  are found with nitric acid. Note also that the increase of negative charge on oxygen atom  $q_0^{min}$  of oxygen-containing oxidizers leads to a decrease of the values  $T_c$  and  $T_e$ . The O<sub>2</sub> and OF<sub>2</sub> oxidizers are characterized by the maximum values of combustor and combustor-exit temperature –  $T_c$ ,  $T_e$ . The comparison of MNDO calculated data of oxygen-containing oxidizers (Tab. I) and literature data of parameters of combustion of rocket fuels (Tabs. V, VI) showed that there is complex relationship between these two parameters and  $q_{\Omega}^{\min}$ .

For H<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>N<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, --CH<sub>2</sub> -- and B<sub>5</sub>H<sub>9</sub> we extracted for combustor and combustor-exit temperature  $(T_c - T_e)$  the following correlative dependences on  $q_{\Omega}^{\min}$ .

$$H_{2} \begin{cases} T_{c} = T_{c}^{\max}[0.837 + 0.907(q_{O}^{\min}) + 1.478(q_{O}^{\min})^{2}], \\ T_{c}^{\max}(OF_{2}) = 3547^{\circ}K, R = 0.982 \\ T_{e} = T_{e}^{\max}[0.821 + 1.043(q_{O}^{\min}) + 1.493(q_{O}^{\min})^{2}], \\ T_{e}^{\max}(OF_{2}) = 1622^{\circ}K, R = 0.993 \end{cases}$$

$$N_{2}H_{4} \begin{vmatrix} T_{c} = T_{c}^{\max}[0.853 + 0.765(q_{O}^{\min}) + 1.393(q_{O}^{\min})^{2}], \\ T_{c}^{\max}(OF_{2}) = 4047^{\circ}K, R = 0.959 \\ T_{e} = T_{e}^{\max}[0.819 + 1.011(q_{O}^{\min}) + 1.407(q_{O}^{\min})^{2}], \\ T_{e}^{\max}(OF_{2}) = 2435^{\circ}K, R = 0.97 \end{vmatrix}$$

$$\begin{array}{l} H_2 N_2 \\ (CH_3)_2 \end{array} \left| \begin{array}{l} T_c = T_c^{\max}[0.819 + 0.926(q_{\rm O}^{\min}) + 1.777(q_{\rm O}^{\min})^2], \\ T_c^{\max}({\rm OF}_2) = 4493^{\circ}{\rm K}, R = 0.961 \\ T_e = T_e^{\max}[0.833 + 0.979(q_{\rm O}^{\min}) + 1.271(q_{\rm O}^{\min})^2], \\ T_e^{\max}({\rm OF}_2) = 2705^{\circ}{\rm K}, R = 0.973 \end{array} \right.$$

--CH<sub>2</sub> -- CH<sub>2</sub> 
$$\begin{cases} T_c = T_c^{\max}[0.799 + 1.028(q_{\rm O}^{\min}) + 1.965(q_{\rm O}^{\min})^2 \\ + 13.924(q_{\rm O}^{\min})^3], \\ T_c^{\max}({\rm OF}_2) = 4716^\circ{\rm K}, R = 0.966 \\ T_e = T_e^{\max}[0.914 + 1.013(q_{\rm O}^{\min}) - 0.591(q_{\rm O}^{\min})^2 \\ -7.947(q_{\rm O}^{\min})^3], \\ T_e^{\max}({\rm OF}_2) = 2670^\circ{\rm K}, R = 0.961 \end{cases}$$

### 3.7. Specific Impulse Pressure $(I_p)$ and Increment of Ideal Rocket Velocity $(\Delta V)$

With all considered fuels: H<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>N<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, —CH<sub>2</sub> —, AlH<sub>3</sub>, B<sub>5</sub>H<sub>9</sub> the oxidizers OF<sub>2</sub> and O<sub>2</sub> exhibit the values of specific impulse of pressure  $-I_p$  (Tabs. IV, VII). The minimum values of  $I_p$  are characterized the nitric acid. Here, the increase of negative charge on oxygen atom  $q_{\rm O}^{\rm min}$  of oxygen-containing oxidizers leads to a decrease of the

values  $I_p$  and  $\Delta V$ . These O<sub>2</sub> and OF<sub>2</sub> oxidizers are characterized by the maximum values of specific impulse of pressure  $-I_p$ .

The comparison of calculated data of oxygen-containing oxidizers (Tab. I) and literature data of parameters of combustion of rocket fuels (Tabs. IV, VII) showed that there is complex relationship between these two parameters and  $q_0^{\min}$ .

For H<sub>2</sub>, N<sub>2</sub>H<sub>4</sub>, H<sub>2</sub>N<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, —CH<sub>2</sub>— and B<sub>5</sub>H<sub>9</sub> fuels we extracted for specific impulse of pressure –  $I_p$  and increment of ideal velocity of flight of a rocket –  $\Delta V$  the following correlative dependences on  $q_{\Omega}^{\min}$ .

$$H_2 | I_p = I_p^{\max}[0.919 + 0.559(q_{\rm O}^{\min}) + 0.390(q_{\rm O}^{\min})^2], \\ H_2 | I_p^{\max}({\rm OF}_2) = 261.3 \,{\rm c.}, R = 0.962$$

$$\begin{split} \mathsf{N}_2\mathsf{H}_4 & \begin{bmatrix} I_p = I_p^{\max}[0.924 + 0.356(q_{\mathrm{O}}^{\min})], \\ I_p^{\max}(\mathrm{OF}_2) = 213.3 \,\mathrm{c.}, R = 0.961 \\ \Delta V = \Delta V^{\max}[0.783 + 0.418(q_{\mathrm{O}}^{\min}) \\ +5.55(q_{\mathrm{O}}^{\min})^2 + 12.013(q_{\mathrm{O}}^{\min})^3], \\ \Delta V^{\max}(\mathrm{OF}_2) = 4830 \,\mathrm{M/C}, R = 0.999 \end{split}$$

$$\begin{array}{l} H_2 N_2 \\ (CH_3)_2 \end{array} \left| \begin{array}{l} I_p = I_p^{\max}[0.882 + 0.615(q_{O}^{\min}) + 0.914(q_{O}^{\min})^2], \\ I_p^{\max}(OF_2) = 217.8 \, c., R = 0.992 \\ \Delta V = \Delta V^{\max}[0.779 + 0.489(q_{O}^{\min}) + 5.308(q_{O}^{\min})^2 \\ & + 11.315(q_{O}^{\min})^3], \\ \Delta V^{\max}(OF_2) = 4816 \, \text{M/C}, R = 0.994. \end{array} \right.$$

--CH<sub>2</sub>-- 
$$\begin{cases} I_p = I_p^{\max}[0.856 + 0.737(q_{\rm O}^{\min}) + 1.222(q_{\rm O}^{\min})^2], \\ I_p^{\max}({\rm OF}_2) = 218.5 \,{\rm c.}, R = 0.987 \\ \Delta V = \Delta V^{\max}[0.756 + 0.559(q_{\rm O}^{\min}) + 5.824(q_{\rm O}^{\min})^2 \\ + 12.211(q_{\rm O}^{\min})^3], \\ \Delta V^{\max}({\rm OF}_2) = 5067 \,{\rm M/C}, R = 0.995. \end{cases}$$

$$B_{5}H_{9} \begin{vmatrix} I_{p} = I_{p}^{\max}[0.897 + 0.525(q_{O}^{\min}) + 0.870(q_{O}^{\min})^{2}], \\ I_{p}^{\max}(OF_{2}) = 220.8 \text{ c.}, R = 0.978 \\ \Delta V = \Delta V^{\max}[0.758 + 0.556(q_{O}^{\min}) + 5.854(q_{O}^{\min})^{2} \\ + 11.587(q_{O}^{\min})^{3}], \\ \Delta V^{\max}(OF_{2}) = 4866 \text{ M/C}, R = 0.999. \end{vmatrix}$$

#### 4. CONCLUSIONS

Examples of rocket fuel performance presented above show that

- 1. MNDO method for calculating molecular characteristic such as geometric and electronic structure of rocket fuel oxidizer yields meaningful data relative to reactive fuel characteristics.
- 2. The calculated charge on oxygen atom is an important characteristic of oxygen-containing oxidizers, relative to fuel performance.
- 3. Useful correlative relations exist between parameters of rocket fuels combustion and negative charge on oxygen atom.
- 4. The established correlations between fuel combustion parameters such as: specific traction in atmosphere, specific traction in vacuum, specific impulse pressure, combustor temperature, combustor exit temperature, and increment of ideal rocket velocity prove the technological merits of these calculations and provide guidelines for future rocket fuel research.

#### References

- Bolshakov, F. (1983). Khimiya i tekhnologiya komponentov zitkogo reactivnogo topliva. Khimia, L., p. 320.
- [2] Khimicheskaya enciklopedia, M. (1988). Sovetskaya enciklopedia V. 1-5.
- [3] Pople, J. A. and Bevridze, D., In: "Approximate Molecular orbit Theory" Mc Graw-Hill, New York 1970, p. 214.
- [4] Babkin, V. A., Fedunov, R. G., Ponomarev, O. A., Sangalov, Yu. A. and Minsker, K. S. (1995). Bash. khim. gurnal., No. 3, 4, pp. 46-49.
- [5] Sarner, S., Khimiya reactivnyh topliv. M. Mir 1969.